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COMMENT 
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Canada 
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Abstract. A new Monte Carlo method is proposed which allows for the efficient generation 
of equilibrium conformations of polymer chains in two and three dimensions. The method 
treats each site (monomer) as a potential pivot around which a new conformation may be 
generated by rotating a portion of the chain. The method does not suffer from the severe 
attrition associated with the simple sampling of self-avoiding walks and may be extended 
to treat the interacting polymer chain. We find in two dimensions that v = 0.748 * 0.005 
(exact = 0.750) and in three dimensions v = 0.595 * 0.005 (series expansion and renormalisa- 
tion group predict v-0.588). The end-end distances calculated for shorter chains are in 
good agreement with the exact values from enumeration techniques. 

The interacting polymer chain is a problem that has received attention from several 
groups (see, e.g., Vilanove and Rondelez (1980) for recent experimental results and 
Kremer et a1 (1982) for recent theoretical work) and the determination of the critical 
properties at the 8 point remains an unresolved problem in two dimensions 
(Kholodenko and Freed 1984, Stephen 1975, Marquese and Deutch 1981). At tem- 
peratures lower than the 8 temperature the polymer chain exists in the collapsed phase 
whilst at temperatures above 8 the polymer chain has the critical characteristics of a 
self-avoiding walk (SAW). Thus 

( R k )  - N 2 ”  

where R is the end-end distance or radius of gyration of the chain and N is the 
number of links. 

We find for a polymer embedded in a three-dimensional lattice that v - 0.333 for 
temperatures less than 8 whilst v - 0.59 for temperatures greater than 8 and v - 0.5 
at the 8 temperature (deGennes 1979). However, if the chain is embedded in a 
two-dimensional lattice we expect the following: v = 0.5 for temperatures less than 8, 
v = 0.75 for temperatures greater than 8 (Nienhuis 1982) and v somewhere in the range 
0.51 to 0.67 (Stephen 1975, Flory 1969, Kholodenko and Freed 1984) at the 8 tem- 
perature. 

Monte Carlo techniques for generating polymer chains have been limited to simple 
sampling, ‘reptation’, ‘3-4’ bond motions (Kremer er al 1981), the scanning-ahead 
(Meirovitch 1982) and dimerisation approach (Alexandrowicz 1969). In the simple 
sampling method a chain is generated through the random-walk algorithm and the 
growth process terminated whenever the excluded volume condition is violated. This 
leads to an unbiased sample of SAW or equivalently conformations of polymer chains 
of varying lengths at high temperatures. In order to determine the low-temperature 
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properties these chains are weighted by their respective Boltzmann factors exp( T E /  k B T )  
to take into account the 7 interactions each of energy --E between neighbouring 
segments of the chain. The severe attrition rate limits the method to chains of -100 
monomers and an extremely large number of conformations are needed to ensure 
adequate sampling of the collapsed phase. The ‘reptation’ method introduced by Wall 
and Mandell (1975) and used subsequently by Kremer et a1 (1982) and Baumgartner 
(1982) does not suffer from the ‘attrition’ effect. The polymer chain is placed in an 
initial conformation. One end is labelled the head and a direction is selected at random 
and a link removed from the tail and added to the head. This conformation is selected 
with a probability paexp(-AE/k,T)  where AE is the energy change between the 
initial and final conformation, provided that excluded volume effect is not violated by 
the movement of the link. This method suffers from the disadvantage that -iN 
successful moves are required before a significantly distinct conformation is observed, 
and Kremer et a1 (1982) reported that the method was unsatisfactory for determining 
the low-temperature properties of the interacting chain for N greater than 100. A new 
innovation was introduced by Kremer et a1 (1982) which allowed for internal rotation 
of the chain-the so-called ‘3-4’ bond motion. This is an extension of a technique 
introduced by GCny and Monnerie (1979) which led to a more accurate analysis of 
the collapsed phase than was possible with reptation or simple sampling techniques. 
Two further attempts have been made to circumvent the severe attrition in the generation 
of SAW or interacting sAws-the scanning ahead method of Meirovitch (1982) and the 
dimerisation approach of Alexandrovicz (1969). Briefly, the scanning ahead technique 
avoids attrition by constructing the walks from only the unvisited sites. These walks 
are generated with different weights than an identical SAW and thus these weights have 
to be taken into account in the subsequent analysis, e.g. in the determination of the 
average end-to-end distance, etc. The dimerisation method of Alexandrovicz generates 
segments via the normal SAW algorithms and then segments are randomly selected and 
fused together to form longer chains which are accepted if the excluded volume 
constraint is met. Both these approaches yield satisfactory results for the SAW critical 
properties but suffer from the disadvantage that the configurations generated may not 
be the ‘important’ conformations at low temperatures. 

We consider in this comment an extension of the reptation method-the ‘wiggle’ 
method. The polymer chain is embedded in an initial state in the lattice. We usually 
start with a straight chain. A monomer on the chain is selected at random and an 
available direction at this local site is selected at random. The shorter portion (to 
reduce computation) is moved to this new direction. We treat at this instant the rest 
of the chain as a rigid structure and only consider the rotation about the selected 
monomer. The new conformation is accepted if the excluded volume criterion is 
satisfied-if not the old conformation is retained. A few rotations are shown in figure 
1 starting from an initial straight chain on a square lattice. The process is continued 
by the selection of another monomer which now becomes the pivot and the whole 
process is repeated. Conformations are accepted after a preset number of attempted 
rotations (-60 for the longer chains where we note that on avearage there were 15 
successful rotations). 

We have applied this technique to polymer chains of lengths varying from N = 10 
to N = 1000 on the ZD square lattice and the average end-end distances are shown in 
table 1 together with the available exact values. The agreement with the exact results 
is excellent for small chains. Figure 2 shows a plot of ( R 2 )  against N for chains varying 
from 20 to 1000 links. From a least squares fit of the data and from the slope of the 
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Figure 1. The initial stages indicated in ascending order of a polymer chain of 11 monomers 
as a result of successive rotations about various monomers. 

Table 1. The end-to-end distance obtained by the ‘wiggle’ method for polymer chains of 
length 10 to 1000 links on the 2D square lattice. The results obtained from exact enumeration 
are shown in column 4. A least squares fit of the data gives v = 0.748. 

Mean squared 
end-end 

Exact results‘a’ distance 
Monomers Links Conformations (R’) ( R t )  

11 10 275 000 26.2425 26.200 
16 15 20 000 47.218 47.215 
17 16 20 000 5 1.993 5 1.943 
21 20 20 000 72.309 
31 30 8 000 132.03 
41 40 6 000 202.18 
61 60 6 000 364.34 
81 80 6 000 555.7 

101 100 6 000 783.1 
201 200 6 000 2 201 
301 300 3 000 3 975 
441 440 2 000 7 225 
60 1 600 2 000 11 586 
80 1 800 1 600 17 631 

1001 1000 1100 25 394 

la’  Domb (1963). 
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Figure 2. A log-log plot of the results listed in table 1. The straight line has a slope of 
2v = 1.50 or U = 0.75. 

graph we conclude that Y = 0.748 * 0.005. This result is close to the exact value of 0.75. 
The 3~ results are shown in table 2 and figure 3. We note that the overall agreement 
is quite good although our value of v = 0.595 * 0.005 cannot exclude the Flory result 
of 0.6. The value obtained from series expansion (Majid et al1983) and renormalisation 
group (Le Guillou and Zinn-Justin 1980) is -0.589 which is the lower bound of our 
result. Perhaps the consideration of longer chains may resolve this discrepancy but 
this requires a major reconstruction of our program which is in progress. 

Table 2. The end-end distance obtained by the 'wiggle' method for polymer chains of 
varying length on the simple cubic lattice. The result obtained from exact enumeration is 
shown in column 4. A least squared fit of the data gives v = 0.594. 

Mean-squared 
end-end 

Exact results'"' distance 
Monomers Links Conformations (RL. )  ( R i . )  

11 
21 
31 
41 
50 
61 
76 
90 

126 
151 
200 
22 1 
25 1 

10 
20 
30 
40 
49 
60 
75 
89 

125 
150 
199 
220 
250 

14 000 
10 000 
6 000 
6 000 

10 000 
6 000 
6 000 
6 000 
6 000 

10 000 
6 000 
5 800 
8 000 

16.817 16.913 
38.825 
63.896 
88.88 

113.924 
145 
189 
230 
342 
429 
610 
674 
783 

( a )  Domb (1963) 
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Figure 3. A log-log plot of the results listed in table 2. The straight line has a slope of 
2v=1.183 or u=0.591. 

In summary, we have introduced a new method which is able to produce efficiently 
the conformations of a polymer chain in two and three dimensions. The method is 
efficient and we were able to calculate the average end-end distance of chains of 
lengths ranging to 1000 links in two dimensions and 250 links in three dimensions. 
We are modifying our algorithm to allow for the consideration of longer chains in 
three dimensions and also to take into account interaction between nearest-neighbour 
monomers. We find Y equal to 0.748*0.005 and 0.595*0.005 in two and three 
dimensions respectively. 

This research program is supported by grants from NSERC of Canada and St Francis 
Xavier University. 
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